The spectrum also contained 3 methoxyl singlets at $\delta 3.76$ (C-6'), 3.92 and 3.94 (C-6 and C-12), 12 methylene protons centered around $\delta 2.90$, 2 methine protons at $\delta 3.59$ and 3.62 (C-1 and C-1'), a high field aromatic proton singlet at $\delta 6.10$ (C-8'), and 9 other aromatic protons between $\delta 6.25$ and 7.20. The absence of a high field methoxyl resonance between $\delta 3.02$ and 3.20 confirmed that a hydroxyl function was present at C-7. Since the

⁴ I. R. C. Bick, J. Harley-Mason, N. Sheppard and M. J. Vernengo, J. chem. Soc. 1961, 1896.

⁵ M. TOMITA, M. KOZUKA and M. SATOMI, J. Pharm. Soc. Japan 87, 1012 (1967).

⁶ The authors are grateful to the National Institutes of Health for grant No. HL-12971, and to Professor J. L. Beal for alkaloidal samples. C–6' methoxyl appears at δ 3.76, the existence of thaligine in either the (+-) or (-+) form was suggested 4; and indeed O-methylation with diazomethane afforded (+)-isotetrandrine of known absolute configuration 5. The two samples of isotetrandrine were identical in terms of Rf values, UV-, NMR- and mass spectra, and ord curves.

Résumé. Le nouvel alcaloïde thaligine (1) a été tiré du Thalictrum polygamum Mulh. (Ranunculaceae).

M. Shamma⁶ and S. Y. Yao

Department of Chemistry, The Pennsylvania State University, University Park (Pennsylvania 16802, USA), 8 January 1973.

Structure of Nandazurine, from Nandina domestica Thumb.

Nandazurine, a green colored alkaloid, was first isolated in 1925 from the bark of *Nandina domestica* Thumb. (Berberidaceae) by KITAZATO¹, however its structure has long been unknown. Recently, we isolated nandazurine from the same plant along with several other alkaloids. In this communication we wish to present a report on the structure elucidation of nandazurine.

Nandazurine (I), amorphous dark green powder showing a single spot on TLC, $C_{19}H_{18}O_5N$ (elemental analyses, molecular ion peak at m/e 335), $[\alpha]D~\pm0^\circ$ (C_5H_5N). It is sparingly soluble in common organic solvents and insoluble in aqueous alkali, and gives a positive ferric chloride test. The IR-spectrum (KBr) of nandazurine (I) showed absorptions at 1625 (weak) and

1575 cm⁻¹ (medium) (conjugated >C=O and -C=N+-). Its NMR-spectrum (in trifluoroacetic acid) revealed an N-methyl group (at 4.98 δ), a methoxyl group (at 4.43 δ), a methylenedioxy group (at 6.22 δ), 3 aromatic protons (at 7.62, 7.89, 8.85 δ) and one AB quartet (J = 7 Hz, at 8.43, 8.67 δ). Its UV-spectrum in ethanol or aqueous ethanolic alkali exhibited λ_{max} 221, 230 (sh), 260, 324, 394,

426, 450 (sh) and 606 nm (log ε ; 4.41, 4.43, 4.38, 4.58, 3.84, 3.78, 3.73 and 3.53), which showed a hypsochromic shift on addition of acid solution.

Treatment of nandazurine (I) with sodium borohydride in aqueous methanol gave hexahydronandazurine (II), light green needles, mp 230 $\sim\!234^\circ$, $C_{19}H_{19}O_5N$, [\$\alpha\$]0 \$\pm\$ 0° (CHCl3); NMR (\$\delta\$, \$C_5D_5N\$): 2.58 (3H, s., N-CH3), 3.67 (3H, s., OCH3), 5.00 (2H, broad s., 2×OH), 5.92, 6.01 (2H, 2×d., \$J\$ = 1.5Hz, -OCH2O-), 6.61, 7.17, 7.29 (each

1H, s., aromatic proton), 5.10 (1H, d., J=2.5 Hz, $-\dot{C}H(OH)$). Its UV-spectrum showed [λ_{max} 221 nm (log ε , 4.86), 239 (sh., 4.11), 288 (4.08) and 310 (4.16)] which is characteristic to 1, 2, 9, 10-tetrasubstituted phenolic aporphine alkaloids and exhibits a bathochromic shift on addition of alkali ethanolic solution ². These spectral data suggested that hexahydronandazurine (II) should have a 7-hydroxy-1,2,9,10-tetrasubstituted aporphine structure as in II.

¹ Z. Kitazato, J. pharm. Soc. Japan 45, 695 (1925).

² M. Shamma, Experientia 16, 484 (1960).

$$\begin{array}{c} \text{CH}_3\text{O} \\ \text{-O} \\ \text$$

When reduced with zinc and hydrochloric acid, nandazurine (I) afforded colorless needles, mp 150 $\sim\!153^\circ,$ $C_{19}H_{19}O_4N,$ which was proved to be completely identical with an authentic sample of dl-domesticine (III)³ by IR (CHCl₃), NMR (CDCl₃) and TLC-comparisons. Therefore, it is proved that the hexahydronandazurine has structure II, and consequently nandazurine must have structure I.

- J. KUNITOMO, K. MORIMOTO, S. TANAKA and S. HAYATA, J. pharm. Soc. Japan 92, 207 (1972).
- ⁴ V. Preininger, J. Hrbek, Z. Samek and F. Santavy, Arch. Pharm. Berl. 302, 808 (1969).
- ⁵ I. Ribas, J. Sueiras, L. Castedo, Tetrahedron Lett. 1971, 3093.
- ⁶ Address: 4–16 Edagawa-cho, Nishinomiya, Hyogo (Japan).
- ⁷ Address: 1-1 Machikaneyama-cho, Toyonaka, Osaka (Japan).
- 8 The authors are grateful to President M. Tomita, Kyoto College of Pharmacy, for his encouragement in this work.

Since it has been known^{4,5} that 7-oxo-dibenzo[de,g]quinoline derivatives possessing a phenol group on C-1 or C-11 exhibit green color when they can assume a zwitterionic structure, the foregoing observations suggest that nandazurine possesses a mesomeric and zwitterionic structure (Ia) \leftrightarrow (Ib).

Zusammenfassung. Strukturaufklärung des grünen Farbstoffs Nandazurin, aus Rinden von Nandina domestica Thumb. extrahiert. Chemische Reaktion und Spektren weisen auf eine Zwitterstruktur hin (Formel Ia \leftrightarrow Ib).

J. Kunitomo, M. Ju-ichi, Y. Yoshikawa 6 and H. Chikamatsu 7,8

Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo; and Faculty of Engineering Science, Osaka University⁷,

Alkaloids of Cranberries

Alkaloids separated up to date from cranberries are derivatives of two major chemical families, these being the indolic – cannagunine series – and the azatricyclic – cannivonine series – families ¹⁻⁴. All the alkaloids, each having a N-methyl function, probably participate as active ingredients in the physiologically active extracts of this plant. The study of 2 basic products isolated from cranberry extracts is now reported (Formulae).

Results and discussion. The identification of the first alkaloid – Cannagunine B (1) was relatively easy because of the similarity in structure with the known product¹, the only difference being the carbomethoxy group α to the N_B atom. The NMR-spectra (Varian A-60, CDCl₃, TMS, δ , ppm) of Cannagunine¹ and Harmene type alkaloids⁵ give the following results: N–CH₃ proton signal at 2.7 ppm, COOCH₃ proton signal at 3.6 ppm, 4 aromatic protons' signal at 2.2–2.6 ppm. The IR-spectrum showed an α , β -unsaturated, 7 membered, lactone ring system at 1718 cm⁻¹.

The first problem was determining the posision of substitution by the $COOCH_3$ group. The particular N-CH-COOCH₃ proton, its signal appearing at 3.70 ppm, having a common coupling constant with the protons of the tryptophane part of the skeleton⁶, permitted the localisation of the carbomethoxy group in the indicated position. The exact mass measurement of the molecular

weight peak gives 380.1740, which corresponds to $C_{22}H_{24}N_2O_4$. The base peak at 379 (M⁺–1) corersponds to a loss of hydrogen and an intense M⁺–15 fragment confirms our suppositions. The structure of the E ring is supported by two fragments, at M⁺–44 and M⁺–70 (–CO₂, –C₂H₄). Details of the fragmentation process were previously discussed ¹.

The structure of the second alkaloid-Cannagunine C (2), exact mass measurement–398.1847–($C_{22}H_{26}N_2O_5$), was established through spectral analysis and basic hydrolysis of 1. The possibility that 2 was formed during the isolation of 1 is improbable because the hydrolysis condi-

- ¹ K. Jankowski, I. Jankowska and J. Boudreau, Experientia 27, 1141 (1971).
- $^{\rm 2}$ K. Jankowski and I. Jankowska, Experientia 27, 1383 (1971).
- ³ K. Jankowski, Can. J. Chem. 50, in press (1973).
- ⁴ K. Jankowski, Science, in press (1973).

Osaka (Japan), 13 November 1972.

- ⁵ L. D. Antonaccio, N. A. Pereira, B. Gilbert, H. Vorbrueggen, H. Budzikiewicz, J. M. Wilson, L. J. Durham and C. Djerassi, J. Am. chem. Soc. 84, 2161 (1962). G. Spiteller and M. Spiteller-Friedmann, Mh. Chem. 93, 795 (1962). H. Budzikiewicz, D. H. Williams and C. Djerassi, Structure Elucidation of Natural Products by Mass Spectrometry (Holden-Day, Inc., San Francisco 1964), vol. 1, p. 77.
- ⁶ see Varian Analytical Instrument Division, High resolution NMR-spectra Catalog, Palo Alto, cif. (1962), vol. 2, p. 582.

COOCH₃

$$CH_{2}OH$$

$$CH_{2}OH$$

$$CH_{2}OH$$

$$CH_{2}OH$$

$$CH_{2}OH$$

$$CH_{2}OH$$

$$CH_{2}OH$$

$$CH_{2}OH$$

$$CH_{2}OH$$

$$CH_{2}OH$$